
Lingua Project
(11) Program correctness in Lingua (2)

(Sec. 9.3)

Andrzej Jacek Blikle

April 12th, 2025

The book "Denotational Engineering" may be downloaded from:

https://moznainaczej.com.pl/what-has-been-done/the-book

Algorithmic conditions
(repetition)

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 2

con : AlgCondition =

 SpePro @ Condition | left algorithmic conditions

 Condition @ SpePro right algorithmic conditions

[] : AlgCondition ⟼ WfState ⟼ {tv, fv}

[spr @ con].sta =

 (∃ sta1 : {con}) [spr].sta = sta1 ➔ tv i.e. [con].([spr].sta) = tv

true ➔ fv

[con @ spr].sta =

 (∃ sta1 : {con}) [spr].sta1 = sta ➔ tv

 true ➔ fv

Since algorithmic conditions

are 2-valued, they are

unambiguously identified by

their truth domains:

{spr @ con} = [spr] ● {con}

{con @ spr} = {con} ● [spr]

We assume that

conditions are closed

under @.

None of them is error-transparent and:

• if spr is error transparent and con is

error sensitive, then spr @ con is

error negative,

• con @ spr need not be error sensitive.

Error-sensitive conditions

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 3

con is error-transparent iff(def) is-error.sta implies [con].sta = error.sta

con is error-negative iff(def) is-error.sta implies [con].sta = fv

con is error-sensitive iff(def) con error-transparent or con error-negative

None of spr@con or con@spr is error-transparent and:

• if spr is error transparent and con is error sensitive, then spr@con is error

negative,

• con@spr need not be error sensitive.

A nearly true condition:

[NT].sta =

 is-error.sta ➔ error.sta

 true ➔ tv

NT is error-transparent

A taxonomy of metaconditions

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 4

Metaconditions describe properties of conditions and programs.

The categories of atomic metaconditions:

1. relational metaconditions represent binary relations between conditions,

2. metaprograms describe properties of specprograms,

3. behavioral metaconditions describe properties of conditions relative to

specinstructions or specprograms,

4. temporal metaconditions describe properties of conditions related to their

execution-time in correct metaprograms,

5. language-dependent metaconditions describe properties of conditions

which are not related to programs, but depend on a programming

language where they are used.

Since metaconditions are 2-valued we use classical propositional connectives

and quantifiers in compound metaconditions.

The art of programming in Lingua is not reduced to writing declarations and

instructions. Equally important is the creation and use of conditions.

Relational metaconditions
(repetition)

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 5

Atomic metaconditions (metapredicates):

con1  con2 iff (def) {con1} ⊆ {con2} metaimplication; stronger than

con1 con2 iff (def) {con1} = {con2} weak equivalence

con1 ⊑ con2 iff (def) [con1] ⊆ [con2] better definedness; more defined than

con1 ≡ con2 iff (def) [con1] = [con2] strong equivalence

MetaConditions = the least language that includes atomic metaconditions and is

closed under 2-valued propositional connectives and quantifiers.

x > 0 and-kl 2 𝑥 > 2 ≡ x > 4
2 𝑥 > 2  x > 4 but ≡ does not hold,
2 𝑥 > 4  x > 3 but neither  nor ⊑ holds.
2 𝑥 < 2 ⊑ x < 4 if 2 𝑥 undefined for x < 0

con1 ≡ con2 iff con1 ⊑ con2 and con2 ⊑ con1

con1  con2 iff con1  con2 and con2  con1

con1 ≡ con2 implies con1  con2

con1 ≡ con2 implies con1 ⊑ con2

con1  con2 implies con1  con2

metaconditions

are 2-valued

Relational metaconditions
(contextual metaconditions)

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 6

con1 ≡ con2 whenever con means con and-kl con1 ≡ con and-kl con2

con1  con2 whenever con means con and-kl con1  con and-kl con2

con1  con2 whenever con means con and-kl con1  con and-kl con2

context

n > x2 ≡ 2 𝑛 > x whenever (n ≥ 0 and-kl x ≥ 0)

n > x2  2 𝑛 > x whenever x ≥ 0

Relational metapredicates in the
algebra of conditions

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 7

Selected facts:

(1) ≡ and  are equivalence relations

(2) ≡ is a congruence wrt and-kl, or-kl and not-kl, e.g.:

 if con1 ≡ con2

 then (con and-kl con1) ≡ (con and-kl con2)

(3)  is a congruence wrt and-kl and or-kl but not wrt not-kl

(4) and-kl and or-kl are strongly associative

(5) and-kl and or-kl are strongly commutative

(6) de Morgan laws are strongly satisfied

(7) if [con].sta = ! then [con or-kl (not con)].sta ≠ fv law of excluded middle

 i.e. {con or-kl (not con)} = {}

(8) if [con].sta = ! then [con and-kl (not con)].sta ≠ tv law of contradiction

Three linguistic levels

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 8

implies-kl : Condition x Condition ⟼ Condition constructor in Lingua-V

 : Condition x Condition ⟼ {tt, ff} constructor in MetaLingua

implies : {tt, ff} x {tt, ff} ⟼ {tt, ff} classical implication in MetaLingua

(con1 implies-kl con2) ≡ NT implies con1  con2

Lingua – a (classical) programming language

Lingua-V – a language of validating programming

 metaprograms used to talk about programs

MetaLingua – a language of a 2-valued logic to talk about metaprograms

 metaconditions are formulas in this logic

con1  con2 does not imply (con1 implies-kl con2) ≡ NT.

Despite that the metaimplication 2 𝑥 > 4  x > 3 holds, the condition

2 𝑥 > 4 implies-kl x > 3

is undefined for x < 0.

Two concepts of program correctness

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 9

prc @ spr  poc partial correctness of spr relative to prc and poc

prc  spr @ poc clean total correctness of spr relative to prc and poc

if poc is error sensitive

prc @ spr is the strongest partial postcondition for spr and prc,

spr @ poc is the weakest total precondition for spr and poc

pre prc : spr post poc iff (def) prc  spr @ poc

Correctness of metaprograms

syntax of metaprograms

The denotations of metaprograms are tt and ff.

Behavioral metapredicates
(depend on program’s behavior)

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 10

con insures LR of sin iff [sin] has limited replicability (LR) in {con}

con resilient to spr iff con @ spr  con

con consumed by spr iff con  spr @ not-kl con

con catalyzing for spr iff con  spr @ con

con essential for spr iff con ≡ spr @ NT con is the weakest precondition for spr

[NT].sta = nearly true

 is-error.sta ➔ error.sta

 true ➔ tv

pre (x is free) and-kl (var y is integer) :

let x be real tel;

 asr val x is real rsa

 x := 17,3

 …

post (var x is real) and-kl (var y is integer) and-kl (x = 17,3)

resilient

consumed by

and essential for

declaration of x

catalyzing and

essential

Temporal metapredicates
(execution-time dependent)

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 11

A cut of a metaprogram

 mpr = pre prc : spr post poc

is a pair (head, tail) such that spr = head ; tail

and ; is not in the body of a procedure

Let mpr = pre prc: spr post poc

con primary in mpr iff con satisfied at the entrance

con induced in mpr iff con is satisfied in a cut

con hereditary in mpr iff con once satisfied is satisfied in all later cuts

con co-hereditary in mpr iff con once falsified is false in all later cuts

con perpetual in mpr iff con is primary and hereditary

Temporal metapredicates

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 12

Let mpr = pre prc: spr post poc

con primary in mpr iff con satisfied at the entrance

con induced in mpr iff con is satisfied in a cut

con hereditary in mpr iff con once satisfied is satisfied in all later cuts

con co-hereditary in mpr iff con once falsified is false in all later cuts

con perpetual in mpr iff con is primary and hereditary

pre (x is free) and-kl (var y is integer) :

let x be real tel;

 asr val x is real rsa

 x := 17,3

 …

post (var x is real) and-kl (var y is integer) and-kl (x = 17,3)

x is free — is primary and co-hereditary,

var y is integer — is perpetual

var x is real — is induced and hereditary,

x = 17,3 — is induced but not necessarily hereditary.

Language related metapredicates
(program independent; universal)

Apr 12th, 2025 A.Blikle - Denotational Engineering; part 11 (14) 13

con is immunizing iff hereditary in every program

 e.g., var ide is real

con is immanent iff never false; may be tt, ?, ee

 e.g., x + y = y + x

con is underivable iff must be assumed in prc to be satisfied

 e.g., x is free

Two general rules of handling conditions:

• if we need an underivable condition in a program, we have to put it to

precondition,

• whenever a hereditary condition appears somewhere in the program, we

can add it to the postcondition; strongest postcondition is a conjunction of all

hereditary conditions

Apr 12th, 2025 14A.Blikle - Denotational Engineering; part 11 (14)

Thank you for

your attention

	Slajd 1: Lingua Project (11) Program correctness in Lingua (2) (Sec. 9.3)
	Slajd 2: Algorithmic conditions (repetition)
	Slajd 3: Error-sensitive conditions
	Slajd 4: A taxonomy of metaconditions
	Slajd 5: Relational metaconditions (repetition)
	Slajd 6: Relational metaconditions (contextual metaconditions)
	Slajd 7: Relational metapredicates in the algebra of conditions
	Slajd 8: Three linguistic levels
	Slajd 9: Two concepts of program correctness
	Slajd 10: Behavioral metapredicates (depend on program’s behavior)
	Slajd 11: Temporal metapredicates (execution-time dependent)
	Slajd 12: Temporal metapredicates
	Slajd 13: Language related metapredicates (program independent; universal)
	Slajd 14

